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Abstract

A general, consistent and complete framework for geometrical formulation of mechanical systems is proposed, based on
certain structures on affine bundles (affgebroids) that generalize Lie algebras and Lie algebroids. This scheme covers and unifies
various geometrical approaches to mechanics in the Lagrangian and Hamiltonian pictures, including time-dependent Lagrangians
and Hamiltonians. In our approach, Lagrangians and Hamiltonians are, in general, sections of certain R-principal bundles, and
the solutions of analogs of Euler–Lagrange equations are curves in certain affine bundles. The correct geometrical and frame-
independent description of Newtonian Mechanics is of this type.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In earlier papers [4,31] we developed a geometrical theory (AV-geometry) in which functions on a manifold are
replaced by sections of R-principal bundles (AV-bundles). It was used for frame-independent formulation of a number
of physical theories. The general geometrical concepts and tools described in [4] were then applied to obtain the
Hamiltonian picture in this affine setting.

In the present paper, in turn, we are concentrated on the Lagrangian picture and we derive analogs of the
Euler–Lagrange equations in the AV-bundle setting. This is done completely geometrically and intrinsically, however
with no reference to any variational calculus (which we plan to study in our forthcoming paper). We use the framework
of what we call special affgebroids which is more general than that of Lie affgebroids used recently by other authors
[9,14,15,18,19,25]. We get a larger class of Euler–Lagrange equations and larger class of possible models for physical
theories which cover the ones considered in [9] as particular examples. The special affgebroids are related to Lie
affgebroids in the way the general algebroids used in [5] are related to Lie algebroids. The other difference is that we
do not use prolongations of Lie affgebroids that simplifies, in our opinion, the whole picture. This is possible, since
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in our method we do not follow the Klein’s ideas [10] for geometric construction of Euler–Lagrange equations but
rather some ideas due to Tulczyjew [27–29]. The dynamics obtained in this way is therefore implicit but we think it
is the nature of the problem and this approach has the advantage that regularity of the Lagrangian plays no role in the
main construction.

Note that the idea of using affine bundles for geometrically correct description of mechanical systems is not new
and goes back to [26,28,30] (see also [20,21]).

The paper is organized as follows. In Section 2 we recall rudiments of the AV-geometry that will be needed in
the sequel. Section 3 is devoted to the presentation of the concept of double affine bundle which is the fundamental
concept in our approach. In Section 4 we recall the Lagrangian and Hamiltonian formalisms for general algebroids
developed in [5]. On this fundamentals, special affgebroids as certain morphisms of double affine bundles and the
corresponding Lagrangian and Hamiltonian formalisms are constructed and studied in Section 5. In particular, we
derive analogs of Euler–Lagrange equations. We end up with some examples in Section 6.

2. Rudiments of the AV-geometry

We refer to [4] (see also [3,31]) for a development of the AV-geometry. Here we recall the basic notions very
shortly, fixing notation and appropriate local coordinates.

In the standard differential geometry many constructions are based on the algebra C∞(M) of smooth functions on
the manifold M . In the geometry of affine values (AV-geometry in short) we replace C∞(M) by the space of sections
of certain affine bundle over M . Let ζ : Z → M be a one-dimensional affine bundle over the manifold M modelled
on the trivial vector bundle M × R. Such a bundle will be called a bundle of affine values (AV-bundle in short). The
difference of two sections of Z is then an ordinary function on the base. One can also say that AV-bundles are just
one-dimensional special affine bundles A = (A, vA), i.e. affine bundles A with a distinguished nowhere-vanishing
section vA of the model vector bundle V(A).

Every special affine bundle defines an AV-bundle AV(A) being the affine fibration A → A, where A = A/〈vA〉

with the free R-action induced from translations in the direction of −vA.
The phase bundle PZ, defined analogously to T∗M , is an affine bundle modelled on T∗M and equipped with a

canonical symplectic form. There is an affine de Rham differential d : Sec(Z) → Sec(PZ). We write simply PA for
P(AV(A)).

For a special affine bundle A = (A, vA) over M its special affine dual A# is the affine subbundle in the vector
bundle AĎ of affine morphisms from fibers of A into R, consisting of morphisms which are special, i.e. whose linear
part maps vA into 1. The constant map 1A is the canonical distinguished nowhere-vanishing section of the model
vector bundle. For example, (A × R)#

= AĎ. There is an obvious special affine pairing

〈·, ·〉sa : A ×M A#
→ M × R, 〈am, ϕm〉sa = (m, ϕm(am)), (2.1)

which is a special affine morphism with respect to each argument, and a canonical identification (A#)#
' A.

A Lie affgebroid is an affine bundle A over M with a Lie affgebra bracket, i.e. an affine-linear map on the space of
sections

[·, ·] : Sec(A) × Sec(V(A)) → Sec(V(A))

satisfying skew-symmetry and Jacobi identity, together with a morphism of affine bundles ρ : A → TM (thus
inducing a map from Sec(A) into vector fields on M) satisfying the anchor property. In other words, we assume the
conditions

• skew-symmetry: [a1, a2 − a1] = [a2, a2 − a1],

• Jacobi identity: [a1, [a2, a3 − a2]] + [a2, [a3, a1 − a3]] + [a3, [a1, a2 − a1]] = 0,

• anchor property: [a1, f (a2 − a1)] = f [a1, a2 − a1] + ρ(a1)( f )(a2 − a1)

for all ai ∈ Sec(A), i = 1, . . . , 3, and for any smooth function f on M . A special Lie affgebroid is a Lie affgebroid
on a special affine bundle such that the distinguished section is a central element of the corresponding bracket. Note
that, due to skew-symmetry, one can also see the above Lie affgebra bracket as a bi-affine operation on sections of A
if we put [a1, a2] := [a1, a2 − a1].
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Example 2.1. Given a fibration ξ : M → R, take the affine subbundle A ⊂ TM characterized by ξ∗(X) = ∂t for
X ∈ Sec(A). Then the standard bracket of vector fields in A, and ρ : A → TM being just the inclusion, define on A
a structure of a Lie affgebroid. This is the basic example of the concept of affine Lie algebroid developed in [19,25].

Given an AV-bundle Z over M , an aff-Poisson bracket on Z is a Lie affgebra bracket

{·, ·} : Sec(Z) × C∞(M) → C∞(M) (2.2)

such that

Xσ = {σ, ·} : C∞(M) → C∞(M)

is a derivation represented by a vector field on M (called the Hamiltonian vector field of σ ) for every σ ∈ Sec(Z).
For any AV-bundle Z = (Z , vZ) the tangent bundle TZ is equipped with the tangent R-action. Dividing TZ by the

action we obtain the Atiyah algebroid of the principal R-bundle Z which we denote by T̃Z. It is a special Lie algebroid
whose sections are interpreted as invariant vector field on the principal R-bundle Z. The distinguished section of T̃Z
is represented by the fundamental vector field χZ of the R-action on Z. The AV-bundle AV(̃TZ) is a bundle over TM .
The special affine dual for the special affine structure on T̃Z is (̃TZ)#

= PZ×R. The special affine evaluation between
PZ × R and T̃Z comes from the interpretation of sections of PZ as R-invariant 1-forms α on Z such that 〈α, χZ〉 = 1
(i.e. principal connections on the R-principal bundle Z) that gives an affine-linear pairing 〈·, ·〉Ď : PZ ×M T̃Z → R
and the identification (PZ)Ď = T̃Z (cf. [3,4]). In this way sections of (PZ)Ď = T̃Z represent affine derivations
D : Sec(Z) → C∞(M) (i.e. such affine maps whose linear part Dv : C∞(M) → C∞(M) is a derivation, thus a
vector field on M). It is now obvious that affine biderivations B : Sec(Z) × Sec(Z) → C∞(M) are sections of the
bundle T̃Z ⊗M T̃Z. In this picture, skew-symmetric affine biderivations are sections of ∧

2 T̃Z and they are uniquely
determined by the brackets (2.2) defined by {a, v} = B(a, a + v).

2.1. Local affine coordinates and canonical identifications

For a special affine bundle A = (A, vA) of rank m, we use a section e0 of the affine bundle A to identify A with
its model special vector bundle V(A). The distinguished section vA we can then extend to a basis e1, . . . , em of local
sections of V(A) such that em = vA. In this way we can get a basis e0, . . . , em of local sections of the vector hull
Â = (AĎ)∗ and the dual basis e∗

0, . . . , e∗
m of local sections in Â∗

= Â# such that e∗

0 represents the distinguished
section of V(A#). If we choose local coordinates (xa) on the base manifold, these bases give rise to local coordinates
(xa, y0, . . . , ym) and (xa, ξ0, . . . , ξm) in the special vector bundles Â and Â∗

, respectively, defined by

yi
= ιe∗

i
for i = 0, . . . , m − 1, ym

= −ιe∗
m , (2.3)

ξi = ιei for i = 1, . . . , m, ξ0 = −ιe0 , (2.4)

where ιe denotes the linear function on Â∗
corresponding to the section e of Â. With these coordinates the affine

subbundles A and A# in Â and Â# are characterized by the equations y0
= −1 and ξm = −1, respectively. Moreover

(xa, y1, . . . , ym) and (xa, ξ0, . . . , ξm−1) are local coordinates in A and A#, respectively, in which the special affine
pairing 〈·, ·〉sa : A ×M A#

→ R reads

〈(x, y1, . . . , ym), (x, ξ0, . . . , ξm−1)〉sa =

m−1∑
1

yiξi − ym
− ξ0. (2.5)

Note that the base manifold A of the AV-bundle ζ : A → A is an affine bundle η : A → M with induced coordinates
(xa, yi ), i = 1, . . . , m − 1, so ζ(x, y1, . . . , ym) = (x, y1, . . . , ym−1) and χAV(A) = −∂ym , i.e.

A 3 (x, y1, . . . , ym) 7→ ((x, y1, . . . , ym−1), ym) ∈ A × R

represents a local isomorphism of AV(A) and A × R. Similar observations hold for A# and coordinates (x, ξ).
Coordinates on special affine bundles used in the sequel will be always of this type.
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In the space of sections of AV(A) one can distinguish affine sections, i.e. such sections

σ : A = A/〈vA〉 → A

which are affine morphisms. The space of affine sections will be denoted by AffSec(AV(A)). We say that an operation
Sec(AV(A))× Sec(AV(A)) → C∞(A) is affine-closed if the product of any two affine sections is an affine function.

In the linear case there is a correspondence between Lie algebroid brackets on a vector bundle and linear Poisson
structures on the dual bundle. In the affine setting we have an analog of this correspondence. Let X be a section of
V(A). Since V(A) is a vector subbundle in Â, the section X corresponds to a linear function ι

Ď
X on AĎ

= (Â)∗. The
function ι

Ď
X is invariant with respect to the vertical lift of the distinguished section 1A of AĎ, so its restriction to A# is

constant on fibres of the projection A#
→ A#/〈1A〉 and defines an affine function ι#X on the base A#

= A#/〈1A〉 of
AV(A#). Hence we have a canonical identification between

1. sections X of V(A),
2. linear functions ι

Ď
X on AĎ which are invariant with respect to the vertical lift of 1A,

3. affine functions ι#X on A#.

In local coordinates and bases, if X =
∑m

1 fi (x)ei , then ι
Ď
X =

∑m−1
1 fi (x)ξi − fm(x)ξm and ι#X = fm(x) +∑m−1

1 fi (x)ξi .
In the theory of vector bundles there is an obvious identification between sections of the bundle E and functions on

E∗ which are linear along fibres. If ϕ is a section of E , then the corresponding function ιϕ is defined by the canonical
pairing ιϕ(X) = 〈ϕ, X〉. In the theory of special affine bundles we have an analog of the above identification:

Sec(A) ' AffSec(AV(A#)), Fσ ↔ σ,

where Fσ is the unique (affine) function on A# such that χAV(A#)(Fσ ) = 1 (Fσ can be therefore interpreted as a section
of A) and Fσ ◦ σ = 0. In local affine coordinates, we associate with the section

ξ0 = σ(xa, ξ1, . . . , ξm−1) =

m−1∑
1

σi (x)ξi − σm(x)

of AV(A#) the function

Fσ = σ(xa, ξ1, . . . , ξm−1) − ξ0 =

m−1∑
1

σi (x)ξi − σm(x) − ξ0

on A# which represents the section M 3 x 7→
∑m

1 σi (x)ei ∈ A.
Using the above identification we can formulate the following theorem (for the proof see [4]):

Theorem 2.1. There is a canonical one-to-one correspondence between special Lie affgebroid brackets [·, ·]A on A
and affine-closed aff-Poisson brackets {·, ·}A# on AV(A#), uniquely defined by:

{σ, σ ′
}A# = ι#

[Fσ ,Fσ ′ ]A
.

Example 2.2. Let Z = (Z , vZ) be an AV-bundle. The AV-bundle AV((̃TZ)#) is the trivial bundle over the affine phase
bundle PZ and the aff-Poisson bracket, associated with the canonical special Lie algebroid bracket on T̃Z, is the
standard Poisson bracket on PZ associated with the canonical symplectic form ωZ on PZ.

3. Double affine bundles

Let M be a smooth manifold and let (xa), a = 1, . . . , n, be a coordinate system in M . We denote by
τM : TM → M the tangent vector bundle and by πM : T∗M → M the cotangent vector bundle. We have the induced
(adapted) coordinate systems (xa, ẋb) in TM and (xa, pb) in T∗M . Let τ : E → M be a vector bundle and let
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π : E∗
→ M be the dual bundle. Let (e1, . . . , em) be a basis of local sections of τ : E → M and let (e1

∗, . . . , em
∗ ) be

the dual basis of local sections of π : E∗
→ M . We have the induced coordinate systems:

(xa, yi ), yi
= ι(ei

∗), in E,

(xa, ξi ), ξi = ι(ei ), in E∗,

where the linear functions ι(e) are given by the canonical pairing ι(e)(vx ) = 〈e(x), vx 〉. Thus we have local
coordinates

(xa, yi , ẋb, ẏ j ) in TE,

(xa, ξi , ẋb, ξ̇ j ) in TE∗,

(xa, yi , pb, π j ) in T∗E,

(xa, ξi , pb, ϕ
j ) in T∗E∗.

It is well known (cf. [11]) that the cotangent bundles T∗E and T∗E∗ are examples of double vector bundles:

T∗E∗
T∗π //

πE∗

��

E

τ

��
E∗

π // M,

T∗E
T∗τ //

τE∗

��

E∗

π

��
E

τ // M.

Note that the concept of a double vector bundle is due to Pradines [23,24], see also [1,11]. In particular, all arrows
correspond to vector bundle structures and all pairs of vertical and horizontal arrows are vector bundle morphisms.
The above double vector bundles are canonically isomorphic with the isomorphism

Rτ : T∗E −→ T∗E∗ (3.1)

being simultaneously an anti-symplectomorphism (cf. [2,11,8]). In local coordinates, Rτ is given by

Rτ (xa, yi , pb, π j ) = (xa, πi , −pb, y j ).

Exactly like the cotangent bundle T∗E is a double vector bundle, the affine phase bundle PA is canonically a double
affine bundle:

PA
P#ζ //

Pζ

��

A#

η#

��
A

η
// M.

Definition. (1) A trivial double affine bundle over a base manifold M is a commutative diagram of four affine bundle
projections

A
Ξ2 //

Ξ1
��

A2

η2

��
A1

η1 // M,

(3.2)

where A = M × K1 × K2 × K is a trivial affine bundle with the fibers being direct products of (finite-dimensional)
affine spaces K1, K2, K , with the obvious projections:

Ξi : M × K1 × K2 × K → Ai = M × Ki , ηi : Ai = M × Ki → M, i = 1, 2.

In particular, the pairs (Ξi , ηi ), i = 1, 2, are morphism of affine bundles.
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(2) A morphism of trivial double affine bundles over the identity on the base is a commutative diagram of morphisms
of trivial affine bundles as above

A
Ξ2

  @
@@

@@
@@

@

Ξ1

����
��
��
��
��
��
��
�

A′

Ξ ′

2

  @
@@

@@
@@

Ξ ′

1

����
��
��
��
��
��
��
�

Φoo

A2

η2

����
��
��
��
��
��
��
�

A′

2

η′

2

����
��
��
��
��
��
��
�

Φ2oo

A1
η1

  @
@@

@@
@@

@ A′

1
η′

1

  @
@@

@@
@@

@
Φ1oo

M M
idoo

(3.3)

where clearly A = M × K1 × K2 × K , A′
= M × K ′

1 × K ′

2 × K ′, etc., and (Ξi , ηi ), (Ξ ′

i , η
′

i ), (Φ,Φi ), and
(Φi , id), i = 1, 2, are morphisms of affine bundles. Note that we have not considered A as an affine bundle
over M , since this structure is accidental in the trivial case and it is not respected by isomorphisms in the above
sense.

(3) A double affine bundle with the model fibre being the product K1 × K2 × K of affine spaces is a commutative
diagram (3.2) of affine bundles, this time not necessarily trivial, which is locally diffeomorphic with trivial double
affine bundles associated with K1 × K2 × K , i.e. there is an open covering {Uα} of M such that

Aα
Ξ2|Aα

//

Ξ1|Aα

��

Aα
2

η2|Aα
2

��
Aα

1

η1|Aα
1 // Uα,

where Aα
i = η−1

i (Uα), i = 1, 2, and Aα
= (Ξ1 ◦η1)

−1(Uα) = (Ξ2 ◦η2)
−1(Uα), is (diffeomorphically) equivalent

to the trivial double affine bundle

Uα × K1 × K2 × K //

��

Uα × K2

��
Uα × K1 // Uα

and such that this equivalence induces an automorphism of the corresponding trivial double affine bundle over the
identity on each intersection Uα

⋂
Uβ .

(4) A morphism of double affine bundles is a commutative diagram (3.3) of morphisms of corresponding affine bundles
which in local trivializations induces morphisms of trivial double affine bundles.

To see how the trivial double affine bundles are glued up inside a (non-trivial) double affine bundle, let us take
affine coordinates (x, y, z, c) in A = Rk

× K1 × K2 × K . Then every morphism Φ : A → A of the double affine
bundle into itself (over the identity on the base) is of the form

Φ(x, y j , za, cu) =

(
x, α

j
0 (x) +

∑
i

α
j
i (x)yi , βa

0 (x) +

∑
b

βa
b (x)zb, γ u

00(x)

+

∑
i

γ u
i0(x)yi

+

∑
b

γ u
0b(x)zb

+

∑
i,b

γ u
ib(x)yi zb

+

∑
w

σ u
w(x)cw

)
.
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Let A be a special affine bundle. The adapted affine coordinates on PA are (xa, yi , pb, ξ j ), i, j = 1, . . . , m − 1, and
the projections read

P#ζ(x, y, p, ξ) = (x, ξ), η#(x, y, p, ξ) = (x, y).

The canonical symplectic form reads ωPA =
∑

a dpa ∧ dxa
+
∑

i dξi ∧ dyi and the affine de Rham differential
d : Sec(AV(A)) → Sec(PA) associates with a section ym

= σ(x, yi ), i = 1, . . . , m − 1 the section dσ :

pa ◦ dσ =
∂σ

∂xa , ξi ◦ dσ =
∂σ

∂yi .

The special vector bundle T̃(AV(A)) = (PA)Ď, which will be denoted shortly T̃A, carries the coordinates
(xa, yi , ẋb, ẏ j , s), i, j = 1, . . . , m − 1, with the affine-linear pairing 〈·, ·〉Ď : PA ×A T̃A → R given by

〈(x, y, p, ξ), (x, y, ẋ, ẏ, s)〉Ď =

∑
i

ξi ẏi
+

∑
a

ẋa pa − s.

We have the obvious projection T̃A → TA that reads (x, y, ẋ, ẏ, s) 7→ (x, y, ẋ, ẏ). Similarly to the linear case, the
double affine bundles PA and PA# are canonically isomorphic (see [31])

PA#

P#η#

  B
BB

BB
BB

B

Pη#

��








PA
Pη

  @
@@

@@
@@

@

P#η

����
��
��
��
��
��
��
�

Rηoo

A
η

����
��
��
��
��
��
��
�

A

η

����
��
��
��
��
��
��
�

idoo

A#

η#

!!C
CC

CC
CC

C A#

η#

  B
BB

BB
BB

B
idoo

M M
idoo .

(3.4)

In local coordinates, Rη is given by

Rη(xa, yi , pb, ξ j ) = (xa, ξi , −pb, y j ).

4. Lie algebroids as double vector bundle morphisms

For Lie algebroids we refer to the survey article [13]. It is well known that Lie algebroid structures on a vector
bundle E correspond to linear Poisson tensors on E∗. A 2-contravariant tensor Π on E∗ is called linear if the
corresponding mapping Π̃ : T∗E∗

→ TE∗ induced by contraction is a morphism of double vector bundles. This is the
same as to say that the corresponding bracket of functions is closed on (fiber-wise) linear functions. The commutative
diagram

T∗E∗
Π̃ // TE∗

T∗E

Rτ

OO
ε

;;wwwwwwwww
,

composed with (3.1), describes a one-to-one correspondence between linear 2-contravariant tensors Π on E∗ and
homomorphisms of double vector bundles (cf. [11,8]) covering the identity on E∗:
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T∗E
ε //

πE

!!C
CC

CC
CC

C

T∗τ

����
��
��
��
��
��
��
�

TE∗

Tπ

""F
FFFFFFF

τE∗

����
��
��
��
��
��
��
�

E
εl //

τ

����
��
��
��
��
��
��
�

TM

τM

����
��

��
��

��
��

��
�

E∗
id //

π

""E
EE

EE
EE

E E∗

π

""E
EE

EE
EE

E

M
id // M .

(4.1)

In local coordinates, every ε as above is of the form

ε(xa, yi , pb, π j ) =

(
xa, πi ,

∑
k

ρb
k (x)yk,

∑
i,k

ck
i j (x)yiπk +

∑
a

σ a
j (x)pa

)
(4.2)

and it corresponds to the linear tensor

Πε =

∑
i, j,k

ck
i j (x)ξk∂ξi ⊗ ∂ξ j +

∑
i,b

ρb
i (x)∂ξi ⊗ ∂xb −

∑
a, j

σ a
j (x)∂xa ⊗ ∂ξ j .

In [8] by algebroids we meant the morphisms (4.1) of double vector bundles covering the identity on E∗, while Lie
algebroids were those algebroids for which the tensor Πε is a Poisson tensor. The relation to the canonical definition
of Lie algebroid is given by the following theorem (cf. [7,8]).

Theorem 4.1. An algebroid structure (E, ε) can be equivalently defined as a bilinear bracket [·, ·]ε on sections of
τ : E → M, together with vector bundle morphisms εl , εr : E → TM (left and right anchors), such that

[ f X, gY ]ε = f (εl ◦ X)(g)Y − g(εr ◦ Y )( f )X + f g[X, Y ]ε

for f, g ∈ C∞(M), X, Y ∈ ⊗
1(τ ). The bracket and anchors are related to the 2-contravariant tensor Πε by the

formulae

ι([X, Y ]ε) = {ι(X), ι(Y )}Πε
,

π∗(εl ◦ X ( f )) = {ι(X), π∗ f }Πε
,

π∗(εr ◦ X ( f )) = {π∗ f, ι(X)}Πε
.

The algebroid (E, ε) is a Lie algebroid if and only if the tensor Πε is a Poisson tensor.

The canonical example of a mapping ε in the case of E = TM is given by ε = εM = α−1
M — the inverse to the

Tulczyjew isomorphism αM : TT∗M → T∗TM [29]. In general, the algebroid structure map ε is not an isomorphism
and, consequently, its dual κ−1

= ε∗r with respect to the right projection is a relation and not a mapping.

5. Lagrangian and Hamiltonian formalisms for general algebroids

The double vector bundle morphism (4.1) can be extended to the following algebroid analog of the so called
Tulczyjew triple
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T∗E∗
Π̃ //

πE∗

��






 T∗π

  A
AA

AA
AA

A TE∗

τE∗

����
��
��
��
��
��
�� Tπ

!!C
CC

CC
CC

C T∗E
T∗τ

����
��
��
��
��
��
�� πE

��@
@@

@@
@@

εoo

E
Π̃r //

τ

����
��
��
��
��
��
��

TM
τM

��








E
εloo

τ

����
��
��
��
��
��
��

E∗
id //

π

!!C
CC

CC
CC

C E∗

π

  B
BB

BB
BB

B E∗

π

  B
BB

BB
BB

B
idoo

M
id // M M

idoo .

(5.1)

The left-hand side is Hamiltonian, the right-hand side is Lagrangian, and the dynamics lives in the middle.

The Lagrangian L : E → R defines two smooth maps: the Legendre mapping: λL : E −→ E∗, λL = τE∗ ◦ ε ◦ dL ,
which is covered by the Tulczyjew differential ΛL : E −→ TE∗, ΛL = ε ◦ dL:

T∗E
ε // TE∗

τE∗

��
E

λL //

dL

OO
ΛL

77nnnnnnnnnnnnnn
E∗.

The lagrangian function defines the phase dynamics D = ΛL(E) ⊂ TE∗ which can be understood as an implicit
differential equation on E∗, solutions of which are ‘phase trajectories’ of the system, i.e. curves β : R → E∗ such
that Tβ(t) ∈ D. An equation for curves γ : R → E (analog of the Euler–Lagrange equation) is:

(EL) : T(λL ◦ γ ) = ΛL ◦ γ.

In local coordinates, D has the parametrization by (xa, yk) via ΛL in the form (cf. (4.2))

ΛL(xa, yi ) =

(
xa,

∂L
∂yi (x, y),

∑
k

ρb
k (x)yk,

∑
i,k

ck
i j (x)yi ∂L

∂yk (x, y) +

∑
a

σ a
j (x)

∂L
∂xa (x, y)

)
(5.2)

and the equation (EL), for γ (t) = (xa(t), yi (t)), reads

(EL) :
dxa

dt
=

∑
k

ρa
k (x)yk,

d
dt

(
∂L
∂y j

)
=

∑
i,k

ck
i j (x)yi ∂L

∂yk (x, y) +

∑
a

σ a
j (x)

∂L
∂xa (x, y), (5.3)

in the full agreement with [12,16,17,32], if only one takes into account that, for Lie algebroids, σ a
j = ρa

j . As one can
see from (5.3), the solutions are automatically admissible curves in E , i.e. the velocity d

dt (τ ◦ γ )(t) equals εl(γ (t)).

Note that the tensor Πε gives rise also to kind of a Hamiltonian formalism (cf. [22]). In [8] and [22] one refers to a
2-contravariant tensor as to a Leibniz structure. In the presence of Πε, by the Hamiltonian vector field associated with
a function H on E∗ we understand the contraction idHΠε. Thus the question of the Hamiltonian description of the
dynamics D in the simplest form is the question if D is the image of a Hamiltonian vector field. Every such a function
H we call a Hamiltonian associated with the Lagrangian L . In the case of a hyperregular Lagrangian, i.e. when
ΛL is a diffeomorphism, we recover the standard correspondence between Lagrangians and Hamiltonians (see
[5, Corollary 1]).

Theorem 5.1. If the Lagrangian L is hyperregular, then H(e∗
x ) = 〈λ−1

L (e∗
x ), e∗

x 〉 − L ◦ λ−1
L (e∗

x ) is a Hamiltonian
associated with L. This Hamiltonian has the property that the Lagrange submanifold N = dL(E) in T∗E corresponds
under the canonical isomorphism Rτ to the Lagrange submanifold dH(E∗) in T∗E∗.
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6. Special affgebroids as morphisms of double affine bundles

Let η : A = (A, vA) → M be a special affine bundle. With an analogy to the linear case, by a general special
affgebroid on A we mean a morphism of double affine bundles covering the identity on A#:

PA
E //

Pη

��?
??

??
??

?

P#η

����
��
��
��
��
��
��
�

TA#

Tη#

!!D
DD

DD
DD

D
τA#

��








A
El //

η

����
��
��
��
��
��
��
�

TM

τM

����
��
��
��
��
��
��
��

A# id //
η#

  B
BB

BB
BB

B A#

η#

!!C
CC

CC
CC

C

M
id // M .

(6.1)

Every such morphism is the composition of (3.4) with a morphisms of double affine bundles

PA# Π̃ //

P#η#

  A
AA

AA
AA

A

Pη#

��








TA#

Tη#

!!D
DD

DD
DD

D
τA#

��








A
Π̃l //

η

����
��
��
��
��
��
��
�

TM

τM

����
��
��
��
��
��
��
��

A# id //
η#

!!C
CC

CC
CC

C A#

η#

!!C
CC

CC
CC

C

M
id // M .

(6.2)

Such morphisms correspond to affine tensors Π = ΠE ∈ Sec(̃TA#
⊗A# TA#) or, equivalently, to affine-closed

biderivation brackets

{·, ·}Π : Sec(AV(A#)) × C∞(A#) → C∞(A#). (6.3)

This obvious equivalence is induced by the standard identification

T̃A#
⊗A# TA#

' HomA#((̃TA#)∗, TA#) ' HomA#(P̂A#, TA#) ' AffA#(PA#, TA#),

so

{σ, f }Π = 〈Π , dσ ⊗ d f 〉,

where the affine de Rham differential dσ ∈ Sec(PA#) is regarded also as a section of the vector hull P̂A#. That (6.3)
is an affine-closed biderivation means that the bracket is an (affine) derivation with respect to the first argument, a
derivation with respect to the second argument, and it is affine-closed, i.e. the bracket {σ, f }Π of an affine section
σ : A#

→ A# and an affine function f on A# is an affine function on A#.
Note that such brackets are just affine-linear parts of certain affine-closed biderivations

{·, ·} : Sec(AV(A#)) × Sec(AV(A#)) → C∞(A#).

On the level of tensors it means that Π can be understood as the projection of a tensor from Sec(̃TA#
⊗A# T̃A#),

i.e. as the projection of a χA-invariant and affine 2-contravariant tensor on A#. Note that in the skew-symmetric case,
e.g. in the case of an aff-Poisson bracket, there is a one-to-one correspondence between skew biderivations and their
affine-linear parts, since {a, b} = {a, b − a}

2
v, where the latter is the linear part with respect to the second argument.
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According to the identification of sections of A with affine sections of AV(A#) [4, Theorem 13] we can derive out
of the bracket {·, ·}Π , similarly as it has been done for aff-Poisson brackets, a general special affgebroid bracket

[·, ·]Π : Sec(A) × Sec(V(A)) → Sec(V(A)).

The following theorem (which is completely analogous to [4, Theorem 23], so we skip the proof) explains in details
what we understand as a special affgebroid bracket.

Theorem 6.1. A special affgebroid structure (6.1) can be equivalently defined as an affine-linear bracket

[·, ·]E : Sec(A) × Sec(V(A)) → Sec(V(A))

which is special (i.e. [a, u +vA]E = [a +vA, u]E = [a, u]E ), together with an affine bundle morphisms El : A → TM
and a vector bundle morphism Er : V(A) → TM (left and right anchors), such that

[a, gY ]E = g[a, Y ]E + (El ◦ a)(g)Y

and

[a + f X, Y ]E = (1 − f )[a, Y ]E + f [a + X, Y ]E − (Er ◦ Y )( f )X

where a is a section of A and X is a section of V(A). The brackets [·, ·]E , {·, ·}E and the tensor Π = ΠE ∈

Sec(̃TA#
⊗ TA#) are related by the formula

〈ΠE , dFa ⊗ dιX 〉 = ι#
[a,X ]E

= {Fa, ι#X }E ,

where Fa (resp., ι#X ) is the corresponding section of AV(A#) (resp., the corresponding function on A#). The special
affgebroid is a special Lie affgebroid if and only if the tensor ΠE is an aff-Poisson tensor.

In local affine coordinates, every E as above is of the form

E(xa, yi , pb, π j ) =

(
xa, πi , ρ

b
0 (x) +

∑
k

ρb
k (x)yk, cm

0 j (x) +

∑
k

ck
0 j (x)πk

+

∑
i

cm
i j (x)yi

+

∑
i,k

ck
i j (x)yiπk +

∑
a

σ a
j (x)pa

)
, (6.4)

where i, j, k = 1, . . . , m − 1, and E corresponds to the affine 2-contravariant tensor ΠE on A#

ΠE =

m−1∑
i=0, j=1

(
cm

i j (x) +

m−1∑
k=1

ck
i j (x)ξk

)
∂ξi ⊗ ∂ξ j +

∑
b

(
m−1∑
i=0

ρb
i (x)∂ξi ⊗ ∂xb −

m−1∑
j=1

σ b
j (x)∂xb ⊗ ∂ξ j

)
. (6.5)

The corresponding affgebroid bracket on

Sec(A) × Sec(V(A)) ⊂ Sec(Â) × Sec(Â)

reads [
e0 +

m∑
i=1

fi ei ,

m∑
j=1

g j e j

]
=

m∑
k=1

(
m−1∑

i=0, j=1

fi g j ck
i j +

∑
a

(
m−1∑
i=0

ρa
i fi

∂gk

∂xa −

m−1∑
j=1

σ a
j g j

∂ fk

∂xa

))
ek,

with the convention that f0 = 1.
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7. Lagrangian and Hamiltonian formalisms for special affine bundles

Combining (6.1) and (6.2) we get the affine Tulczyjew triple:

PA# Π̃ //

P#η#

  A
AA

AA
AA

A

Pη#

��








TA#

Tη#

!!D
DD

DD
DD

D
τA#

��








PA
P#η

����
��
��
��
��
��
��
� Pη

��?
??

??
??

?
Eoo

A Π̃r //

η

����
��
��
��
��
��
��
�

TM

τM

����
��
��
��
��
��
��
��

A
Eloo

η

����
��
��
��
��
��
��
�

A# id //
η#

!!C
CC

CC
CC

C A#

η#

!!C
CC

CC
CC

C A#

η#

  B
BB

BB
BB

B
idoo

M
id // M M

idoo .

(7.1)

The left-hand side is Hamiltonian, the right-hand side is Lagrangian, and the ‘dynamics’ lives in the middle.
The Lagrangian section L : A → A defines also smooth maps:

PA
E // TA#

τA#

��
A

λL //

dL

OO
ΛL

88ppppppppppppp
A#.

The map λL : A → A#, λL = τA# ◦E ◦dL— the affine Legendre mapping associated with L, and the affine Tulczyjew

differential ΛL : A → TA#, ΛL = E ◦ dL.
The Lagrangian section defines the phase dynamics

D = ΛL(A) ⊂ TA#,

whose integral curves β : R → A# satisfy Tβ(t) ∈ D. An equation for curves γ : R → A (analog of the
Euler–Lagrange equation) is:

(EL) : T(λL ◦ γ ) = ΛL ◦ γ.

This equation is represented by a subset EL of TA being the inverse image

EL = T(L̃eg)
−1(T2A#)

of the subbundle T2A# of holonomic vectors in TTA#.
In local coordinates L is just a function L = L(x, y) and D has the parametrization by (xa, yi ) via ΛL in the form

(cf. (6.4))

ΛL(xa, yi ) =

(
xa,

∂L
∂yi (x, y), ρb

0 (x) +

∑
k

ρb
k (x)yk, cm

0 j (x) +

∑
i

cm
i j (x)yi

+

∑
k

∂L
∂yk (x, y)

(
ck

0 j (x) +

∑
i

ck
i j (x)yi

)
+

∑
a

σ a
j (x)

∂L
∂xa (x, y)

)
, (7.2)

and the equation (EL), for γ (t) = (xa(t), yi (t)), is the system of equations

dxa

dt
= ρa

0 (x) +

∑
k

ρa
k (x)yk, (7.3)

d
dt

(
∂L
∂y j

)
= cm

0 j (x) +

∑
i

cm
i j (x)yi

+

∑
k

∂L
∂yk

(
ck

0 j (x) +

∑
i

ck
i j (x)yi

)
+

∑
a

σ a
j (x)

∂L
∂xa . (7.4)



1996 K. Grabowska et al. / Journal of Geometry and Physics 57 (2007) 1984–1998

Note that in the particular case when the special affine bundle is trivial, A = A0 × R, and the special affgebroid
structure on A comes from the product of a Lie affgebroid structure on A0 and the trivial Lie algebroid structure in
R, this is in the full agreement with [9, (3.14)], if only one takes into account that in this case σ a

j = ρa
j and cm

i j = 0.
As one can see from (7.3), the solutions are automatically admissible curves in A, i.e. the velocity d

dt (η ◦ γ )(t) equals
El(γ (t)).

Like in the algebroid case, the Hamiltonian formalism is related to the tensor ΠE (or the aff-Poisson bracket {·, ·}E
on AV(A#)). By the Hamiltonian vector field associated with a section H of AV(A#) we understand the vector field
on A# associated with the derivation {H, ·}E of C∞(A#). Thus the question of the Hamiltonian description of the
dynamics D in the simplest form is the question if D is the image of a Hamiltonian vector field. Every such a section
H we call a Hamiltonian associated with the Lagrangian L.

Like in the algebroid case (cf. Theorem 5.1), when dealing with a hyperregular Lagrangian section, i.e. when λL
is a diffeomorphism, we can find a Hamiltonian associated with the Lagrangian L explicitly. To describe this “affine
Legendre transformation” let us notice that with every section L of AV(A) we can associate a map L̂ : A → A# as
follows. Let us fix x ∈ M and ax ∈ (A)x and let Wax be the maximal affine subspace in Ax that is tangent to the
submanifold L((A)x ) at L(ax ). There is a unique affine function L̂ax on Ax which is from A#

x (i.e. χA(L̂(ax )) = −1)
and which vanishes on Wax .

Theorem 7.1. If the Lagrangian section L is hyperregular, then H = L̂ ◦ Λ−1
L is a section of AV(A#) which is a

Hamiltonian associated with L.

Proof. Let us use local coordinates and the pairing 〈·, ·〉sa : A ×M A#
→ R as in (2.5). Since the distinguished

direction in A is −∂ym , it is easy to see that the affine function L̂ax , ax = (x, y1
0 , . . . , ym−1

0 ), is

L̂ax (x, y1, . . . , ym−1) =

(
m−1∑
i=1

(yi
− yi

0)
∂L
∂yi (ax ) + L(ax )

)
− ym,

which corresponds to the element(
x,

m−1∑
i=1

yi
0
∂L
∂yi (ax ) − L(ax ),

∂L
∂yi (ax )

)
∈ (A#)x ,

so that

L̂(x, y) =

(
x,

m−1∑
i=1

yi ∂L
∂yi (x, y) − L(x, y),

∂L
∂yi (x, y)

)
.

Since (x, y) 7→ (x, ∂L
∂yi (x, y)) is the Legendre map λL, the composition H = L̂ ◦ λ−1

L is a section of AV(A#), so

H(x, ξ) =

(
x,

m−1∑
i=1

yi (ξ)ξi − L(x, y(ξ)), ξ

)
and we end up with the standard Legendre transform. �

8. Examples

Example 8.1. For an AV-bundle Z = (Z , vZ) take as the Lagrangian bundle the AV-bundle AV(A) over TM with the
special affine (this time, in fact, vector) bundle A = T̃Z. Such situation we encounter in the analytical mechanics of
a relativistic charged particle [26] and in the homogeneous formulation of Newtonian analytical mechanics. We have
here A#

= PZ × R, PA#
= T∗PZ, and

E : PA = PT̃Z → TPZ.

is the canonical isomorphism [31]. Since a choice of a section of Z gives a ‘linearization’ Z ' M × R, so that
PZ ' T∗M and PT̃Z ' T∗TM , we get the canonical Tulczyjew isomorphism E : T∗TM → TT∗M and, in local
coordinates, the classical Euler–Lagrange equation. The point here is that we use the correct geometrical object T̃Z
which does not refer to any ad hoc choice of a section of Z.
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Example 8.2. Let µ : M → R be space–time fibred over time with local coordinates (x i , t), let A ⊂ TM be the
Lie affgebroid of those vectors which project onto ∂t , V = V(A) — the bundle of vertical vectors in TM , and let
A = (A × R, (0, 1)) be the special Lie affgebroid with extended Lie affgebroid structure so that the section (0, 1) is
central. In this case A = A, PA = T∗ A, A#

= AĎ
= T∗M , and A#

= T∗M/〈dt〉 = V∗. If additionally the space–time
is trivial, M = Q × R, there are identifications: A = TQ × R, A#

= T ∗Q × R, so the affine Tulczyjew triple reads

T∗(T∗Q × R)
Π̃E //

!!D
DD

DD
DD

D

����
��

��
��

��
��

��
�

T(TQ × R)

  A
AA

AA
AA

��








T∗(TQ × R)

����
��
��
��
��
��
��
�

!!B
BB

BB
BB

B
Eoo

TQ × R
ρE //

η

����
��
��
��
��
��
��
�

TQ × R

����
��
��
��
��
��
��
�

TQ × R
ρEoo

��








T∗Q × R id //

""E
EE

EE
EE

E T∗Q × R

!!B
BB

BB
BB

B T∗Q × R

!!D
DD

DD
DD

D
idoo

Q × R id // Q × R Q × Ridoo .

In the standard coordinates, ck
i j = 0, ρE = id, and the Euler–Lagrange equation for a time-dependent Lagrangian

L : TQ × R → R can be written as a second-order equation

d
dt

(
∂L
∂ ẋ j

)
(x, ẋ, t) =

∂L
∂x j (x, ẋ, t).

Example 8.3. The Newtonian space–time N is a system (N , τ, g), where N is a four-dimensional affine space with
the model vector space V , together with the time projection τ : V → R represented by a non-zero element of V ∗, and
an Euclidean metric on V0 = τ−1(0) ⊂ V represented by a linear isomorphism g : V0 → V ∗

0 .

It is known that the standard framework for analytical mechanics is not appropriate for Newtonian analytical
mechanics. It is useful for the frame-dependent formulation of the dynamics only. Because of the Newtonian relativity
principle which states that the physics is the same for all inertial observers, the velocity, the momentum, and the
kinetic energy have no vector interpretation, as for example the sum of velocities depends strongly on the observer
(frame). The equivalence of inertial frames means that all the above concepts are affine in their nature and that they
become vectors only after fixing an inertial frame. Of course, to get explicit equations for the dynamics we usually fix
a frame, but a correct geometrical model should be frame-independent.

In [6] (see also [4, Example 11]) an affine framework for a frame-independent formulation of the dynamics has
been proposed. The presented there construction leads to a special affine space A1, for which A1 = V1 = τ−1(1),
and which is equipped with an affine metric, i.e. a mapping h : A1 → A#

1, with the linear part equal to mg, where m
is the mass of the particle. The Lagrangian bundle is A = N × A1. The kinetic part of a Lagrangian is a unique, up
to a constant, section ` of AV(A) such that the Legendre mapping `eg equals h. Let P1 = A#

1. We have the following,
obvious identifications:

• PA = N × V1 × V ∗
× P1 ' N × P1 × V ∗

× V1 = PA#,

• TA#
= N × P1 × V × V ∗

0 .

With this identifications, the mappings E : PA → TA# and Π̃ : PA#
→ TA# read

E : PA = N × V1 × V ∗
× P1 3 (x, v, a, p) 7→ (x, p, v, a) ∈ N × P1 × V × V ∗

0 = TA#,

Π̃ : PA#
= N × P1 × V ∗

× V1 3 (x, p, a, v) 7→ (x, p, v,−a) ∈ TA#,

where a is the image of a with respect to the canonical projection V ∗
→ V ∗

0 . Now, let us consider a Lagrangian of
the form

L : N × E1 → A : (x, v) 7→ (x, `(v) − ϕ(x)),
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where ϕ is a (time-dependent) potential. We have then

dL : N × E1 → PA : (x, v) 7→ (x, v,−dϕ(x), h(v)) ∈ PA

and

T(E ◦ dL) : (x, v, v′, v′′) 7→ (x, h(v), v,−dϕ(x), v′, mg(v′′), v′′, −Tdϕ(x, v′)).

It follows that

EL = {(x, v, v′, v′′) : v = v′, −dϕ(x) = mg(v′′)},

i.e. the Euler–Lagrange equations read

τ(ẋ) = 1, ẍ = −
1
m

∇ϕ(x),

where ∇ϕ(x) = g−1(dϕ(x)) is the spatial gradient of ϕ at x ∈ N .
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[30] P. Urbański, Affine Poisson structure in analytical mechanics, in: J.-P. Antoine, et al. (Eds.), Quantization and Infinite-Dimensional Systems,

Plenum Press, New York, London, 1994, pp. 123–129.
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